
Homework 3
(20 points)

Overview
Objectives:
- Working with PostgreSQL
- Nested queries, grouping, aggregation, joins
- Timing of queries and indexing
Postgres Setup Steps: PostgreSQL & pgAdmin
Database Files: chinook_postgres.sql and flights.zip
Submission File: hw3.yaml
What to Submit: Submit the .yaml file you downloaded above, with your answers to Gradescope.
Due Date: Check Gradescope

Chinook dataset

Alert!

Begin working on this homework only after you have completed the required PostgreSQL setup
(linked above). If you are doing the homework in a group, you each must set up PostgresSQL
as you will need it for the final exam.

Warning

To encourage local testing of commands, and to reduce the load on the Gradescope autograder,
you are allowed a MAXIMUM of 5 submissions. If you exceed the number of submissions, your
submission will not be graded. The submission with the highest score will be your final grade.

Instructions

Make sure to order all your queries in ascending order

1. (1 point) Write the PostgreSQL statements (NOT shell commands!!) needed to import the
dataset. Start by creating the database with name as chinook , connecting to it and importing
the data. Take a look at the \ commands in psql . Try \? for help.

https://ucsd.s3.us-west-2.amazonaws.com/dsc100/guides/Setting+Up+PostgreSQL.pdf
https://drive.google.com/file/d/13hcrU9EZHSzQ-_nR5k-jUMZx_8KXa_sR/view?usp=sharing
https://drive.google.com/file/d/11mYGFAxGp9bxzLZeiKRjB2-al0ehixiL/view?usp=share_link
https://ucsd.s3.us-west-2.amazonaws.com/dsc100/homework/hw3.yaml

2. (1 point) List all tracks that were never purchased by any customers. Return distinct track names
only. Output relation cardinality: 1458

3. (1 point) List the names of all songs that do not belong to the 90’s Music (with a typographic
apostrophe ’ not a straight apostrophe ') playlist. Return distinct track names only. Output relation
cardinality: 1943

4. (1 point) List the artists who did not record any tracks of the Blues genre. Return distinct artist
names only. Output relation cardinality: 270

5. (1 point) List all the playlists that do not have any track in the Rock or Blues genres. Return
distinct playlist names only. Output relation cardinality: 10

6. (1 point) Find the list of artists that record in at least 3 different genres. Return artist names only.
Output relation cardinality: 7

Flights dataset

Instructions

Make sure to time your queries! This is important for your final question. If you are running your
queries on the terminal using psql , you can use the \timing on command. pgAdmin and
BeeKeeper also allow you to view the timing of your query at the bottom of the screen.

Important

No query takes longer than 2 seconds. If your query takes longer, there is probably a better way
to write it.

7. (2 points) Write the PostgreSQL statements (NOT shell commands!!) needed to import the
dataset. Remember that you have to create the database with name as flights , connect to it,
create the tables, and copy the data. This stackoverflow post will help with copying the data. Of
course, the autograder doesn't have superuser access so make sure to read the post carefully :)

​Note
Based on your method of import, it is possible that your database might import the "
(double quotes) as part of your string. Be careful as we do not want the quotes in any of our
outputs

https://stackoverflow.com/questions/2987433/how-to-import-csv-file-data-into-a-postgresql-table

8. (2 points) For each origin city, find the destination city (or cities) with the longest direct flight. By
direct flight, we mean a flight with no intermediate stops. Judge the longest flight in time, not
distance. Name the output columns origin_city , dest_city , and time representing the flight
time between them. Do not include duplicates of the same origin and destination city pair. Order
the result by origin_city and then dest_city in ascending order. Output relation cardinality:
334

9. (2 points) Find all origin cities that only serve flights shorter than 3 hours. Missing data implies
that the flights are shorter than 3 hours. Name the output column city and sort them. List each
city only once in the result. Output relation cardinality: 109

​Hint
Using subqueries will take too long. Check out the FILTER keyword from PostgreSQL:
Documentation: 16: 4.2. Value Expressions

10. (2 points) For each origin city, consider flights that haven't been canceled. Now, find the
percentage of departed flights shorter than 3 hours. For this question, treat flights with missing
time data as longer than 3 hours. Name the output columns origin_city and percentage .
Order by descending percentage value and then ascending origin_city . Be careful to handle
cities without any flights shorter than 3 hours. Report percentage rounded to 2 decimal places
and as percentages (75.25 rather than 0.7525). Output relation cardinality: 327

11. (2 points) List all cities that cannot be reached from San Diego through a direct flight but can be
reached with one stop (i.e., with any two flights that go through an intermediate city). Do not
include San Diego as one of these destinations (even though you could get back with two
flights). Name the output column city . Order the output ascending by city. Output relation
cardinality: 258

​Hint
Think about joining two small tables that have only the required data instead of the very big
FLIGHTS table

12. 1. (1 point) List the names of carriers that operate flights from San Diego to San Francisco.
Return each carrier's name only once. Use a nested query to answer this question. Name
the output column carrier . Order the output ascending by carrier. Output relation
cardinality: 4

2. (1 point) Express the same query as above, but do so without using a nested query. Again,
name the output column carrier and order ascending. Output relation cardinality: 4

13. (2 points) Now that you have completed each query without indexes. Go ahead and add the
following indices/indexes. Feel free to add more indexes based on the queries that you have
written. Get an intuition on which queries would work better if certain columns were ordered.
sql CREATE INDEX idx_flights_origin_actual ON FLIGHTS(origin_city, actual_time);
CREATE INDEX idx_flights_origin_dest ON FLIGHTS(origin_city, dest_city);
Rerun queries 8-12.2 and note down the time it took to execute those queries. Replace the 0.00

https://www.postgresql.org/docs/current/sql-expressions.html#SYNTAX-AGGREGATES

values in the yaml submission file with the execution time in seconds. Provide a 1-2 sentence
explanation on why the queries ran faster with indexes.

​Note
This question will be graded manually.

