Homework 2

(20 points)

Overview

Objectives: To create and import databases and to connect to existing SQLite databases and to
practice simple SQL queries using SQLite. In this homework, you will write queries for two databases,
constructed from the following files: chinook.db and flight-small.csv.

Database Files: chinook.db and flights.zip

Submission File: hw2.yaml|
What to Submit: Submit the .yaml file you downloaded above, with your answers to Gradescope.

Due Date: Check Gradescope

47 Warning

To encourage local testing of commands, and to reduce the load on the Gradescope autograder,
you are allowed a MAXIMUM of 10 submissions. If you exceed the number of submissions,
your submission will not be graded. The submission with the highest score will be your final
grade.

Part 1: Chinook Dataset

The chinook database is an open source SQLite database consisting of information about various
elements in a fictional digital music store, such as artists, albums, employees, and customers .
This information is contained in eleven tables.

Connect to the db and view all the relations

sqlite3 chinook.db
sglite> .tables

albums employees invoices playlists
artists genres media_types tracks
customers invoice_items playlist_track

Info on each relation:

artists stores artists data. It is a simple table that contains only the artist id and name.

https://drive.google.com/file/d/1ORJ2w2C7nf-R4XDci1rlbeovvaPxQ2ww/view?usp=sharing
https://drive.google.com/file/d/11mYGFAxGp9bxzLZeiKRjB2-al0ehixiL/view?usp=sharing
https://ucsd.s3.us-west-2.amazonaws.com/dsc100/homework/hw2.yaml

albums stores data about a list of tracks. Each album belongs to one artist. However, one artist
may have multiple albums.

employees stores employees data such as employee id, last name, first name, etc. It also has a
field named ReportsTo to specify who reports to whom.

customers stores customers data.

invoices & invoice_items: these two tables store invoice data. The invoices table stores invoice
header data and the invoice items table stores the invoice line items data

media_types stores media types such as MPEG audio and AAC audio files.

genres stores music types such as rock, jazz, metal, etc.

tracks stores the data of songs. Each track belongs to one album.

playlists and playlist_track: playlists table store data about playlists. Each playlist contains a
list of tracks. Each track may belong to multiple playlists. The relationship between the playlists

table and tracks table is many-to-many. The playlist_track table is used to reflect this
relationship.**

You can use the following command to find out the schema of a particular table in chinook database
via the SQLite command-line shell program. For example try:

.schema artists

Here is the output

CREATE TABLE IF NOT EXISTS "artists"

(
[ArtistId] INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,

[Name] NVARCHAR(120)
DE

SQL Queries (7 points)

*Hint -- You should be able to write each query without any subqueries

/ Note

If a query uses a GROUP BY clause, make sure that all attributes in your SELECT clause for
that query are either grouping keys or aggregate values. SQLite will let you select other
attributes but that is wrong. Other database systems would reject the query in that case.

(1 Point) Find all the tracks that have a length of 1,000,000 milliseconds or less. Return only the
TrackId column. Output relation cardinality: 3288 row

(1 Point) Find all the invoices from the billing country USA, and Canada and sort in descending
order by invoice ID. Return two attributes - InvoiceID and Total. Output relation cardinality:
147 rows

(1 Point) Find the albums with 25 or more tracks. Return AlbumId and count of tracks as
TrackCount for each AlbumId. Output relation cardinality: 6 rows

(1 Point) Write a query that returns a table consisting of the billing countries and the number of
invoices for each country sorted by the country name in ascending order. Your output should
include BillingCountry attribute and a count column for the number of invoices as
InvoiceCount . Output relation cardinality: 24 rows

(1 Point) Write a query that returns a table consisting of the customers and the total amount of
money spent by each customer. Output sorted CustomerID attribute and total money spent per
customer as TotalSpent . Output relation cardinality: 59 rows

(1 Point) Write a query that returns the CustumerId for customers that listen to the Blues
genre. Sort by CustomerId. Output relation cardinality: 23 rows

(1 point) For the genre Blues, write a query that returns artist names and total number of tracks
as NumberOfTracks . Output relation cardinality: 5 rows

Part 2: Flight Dataset

The data in this database is abridged from the Bureau of Transportation Statistics. The database

consists of four tables regarding a subset of flights that took place in 2015. Here is the schema:

FLIGHTS (fid int,

month_id int, — 1-12
day_of_month int, —-— 1-31
day_of_week_id int, —-- 1-7, 1=Monday, 2=Tuesday,

carrier_id varchar(7),
flight_num int,
origin_city varchar(34),
origin_state varchar(47),
dest_city varchar(34),

dest_state varchar(46),

departure_delay int, —— in mins
taxi_out int, —— 1in mins
arrival_delay int, —— 1in mins
canceled int, —— 1 means canceled
actual_time int, —— 1in mins
distance int, —— in miles

capacity int,
price int — in $

)

http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time

CARRIERS (cid varchar(7), name varchar(83))
MONTHS (mid int, month varchar(9))
WEEKDAYS (did int, day_of_week varchar(9))

/ Note

The capacity and price columns in the dataset are randomly generated, All other data is real.
We leave it up to you to decide how to declare these tables and translate their types to sqlite.
But make sure that your relations include all the attributes listed above.

In addition, make sure you impose the following constraints to the tables above:

The primary key of the FLIGHTS table is fid.

The primary keys for the other tables are cid, mid, and did respectively. Other than these, do not
assume any other attribute(s) is a key / unique across tuples.

FLIGHTS.carrier_id references CARRIERS.cid

FLIGHTS.month_id references MONTHS.mid

FLIGHTS.day_of week_id references WEEKDAYS.did

Z Note

We provide the flights database as a set of plain-text data files in the linked flights.zip
archive. Each .csv file in this archive contains all the rows for the named table, one row per
line.

In this section, you need to do two things:

Import the flights dataset into SQLite
Run SQL queries to answer a set of questions about the data.

IMPORTING THE FLIGHTS DATABASE (5 points)

You should exit out of the chinook database, and use the sqlite3 command to create a new
database, e.g. call it "flights.db". If you create tables and insert data without doing this you will
add the data to the chinook database.

(2 points) Create all the tables necessary for the Flights database.

To import the flights database into SQLite, you will need to run sqlite3 with a new database file. for
example sqlite3 hw2.db. Then you can run CREATE TABLE statement to create the tables, choosing
appropriate types for each column and specifying all key constraints as described above:

CREATE TABLE table_name (...);

Currently, SQLite does not enforce foreign keys by default. To enable foreign keys use the following
command. The command will have no effect if you installed your own version of SQLite was not
compiled with foreign keys enabled. In that case do not worry about it (i.e., you will need to enforce
foreign key constraints yourself as you insert data into the table).

PRAGMA foreign_keys=0N;

(3 points) Insert all of the flights data from the 4 .csv files into the new database.

Then, you can use the SQLite .import command to read data from each text file into its table after
setting the input data to be in CSV (comma separated value) form:

Loading the .csv files, especially flights—small.csv can take a while (3-10 minutes), so
please be patient

.mode csv
.import filename tablename

See examples of .import statements in the section notes, and also look at the SQLite documentation
or sqlite3’s help online for details.

SQL QUERIES (8 points)

*Hint -- You should be able to write each query without any subqueries

/ Note

In the following questions below flights include canceled flights as well, unless otherwise noted.
Also, when asked to output times you can report them in minutes and don’t need to do minute-
hour conversion.

(2 points) Compute the total departure delay of each airline across all flights. Name the output
columns name and delay, in that order. Order by airline name. Output relation cardinality: 22
rows

(2 points) Find the total capacity of all direct flights between San Diego and San Francisco on
July 1st (i.e. SD to SF or SF to SD). Name the output column totalcapacity . Output relation
cardinality: 1 row

(2 points) Write a query that returns the airline name and the percentage of canceled flights out
of San Diego for the airlines that have more than 1% of their flights out of San Diego cancelled.
Order the results by the percentage of canceled flights in ascending order. Name the output
columns name and percent, in that order. *Output relation cardinality: 5 rows

&) Hint
Multiplying by 1.0 is a trick used to implicitly cast an integer to a float to get a decimal
result during division.

(2 points) Find the names of airlines that flew more than 5000 flights in at least one month
originating from California. Return the names of the airlines, month name and the number of
flights. Name the output columns name, month and flightcount . Sort the result in descending
order of flightcount . Output relation cardinality: 6 rows

